Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Vaccine ; 41(27): 4009-4018, 2023 Jun 19.
Article in English | MEDLINE | ID: covidwho-20243650

ABSTRACT

BACKGROUND: Maternal pertussis immunization using Tdap vaccine is recommended in many countries to protect newborns from severe post-natal infection. Immunological changes during pregnancy may influence the response to vaccines. The quality of IgG and memory B cell responses to Tdap immunization in pregnant women has not yet been described. METHODS: The impact of pregnancy on the response to Tdap vaccination was assessed by comparing humoral immune responses in 42 pregnant and 39 non-pregnant women. The levels of serum pertussis antigens and tetanus toxoid-specific IgG, IgG subclasses, IgG Fc-mediated effector functions, as well as memory B cell frequencies were assessed before and at several time points after vaccination. RESULTS: Tdap immunization induced similar levels of pertussis and tetanus-specific IgG and IgG subclasses in pregnant and non-pregnant women. Pregnant women produced IgG promoting complement deposition, and neutrophils and macrophages phagocytosis at levels comparable to non-pregnant women. They were also able to expand pertussis and tetanus-specific memory B cells at similar frequencies as non-pregnant women, suggesting equivalent "boostability". Higher levels of vaccine-specific IgG, IgG subclasses, and IgG Fc-mediated effector functions were detected in cord blood as compared to maternal blood, indicating efficient transport across the placenta. CONCLUSIONS: This study demonstrates that pregnancy does not affect the quality of effector IgG and memory B cell responses to Tdap immunization and that polyfunctional IgG are efficiently transferred across the placenta. REGISTRY'S URL AND THE TRIAL'S REGISTRATION NUMBER: ClinicalTrials.Gov (NCT03519373).


Subject(s)
Diphtheria-Tetanus-acellular Pertussis Vaccines , Tetanus , Whooping Cough , Female , Humans , Infant, Newborn , Pregnancy , Antibodies, Bacterial , Immunoglobulin G , Memory B Cells , Tetanus/prevention & control , Vaccination , Whooping Cough/prevention & control
2.
J Infect Dis ; 2023 May 21.
Article in English | MEDLINE | ID: covidwho-2323124

ABSTRACT

BACKGROUND: NVX-CoV2373 is an efficacious COVID-19 vaccine comprising full-length 5-µg recombinant SARS-CoV-2 spike (rS) glycoprotein and Matrix-M™ adjuvant. Phase 2 of a randomized, placebo-controlled, phase 1/2 trial in healthy adults (18-84 years) previously reported good safety/tolerability and robust humoral immunogenicity. METHODS: Participants were randomized to placebo or 1 or 2 doses of 5-µg or 25-µg rS with 50 µg Matrix-M adjuvant 21 days apart. CD4+ T-cell responses to SARS-CoV-2 intact S or pooled peptide stimulation (with ancestral or variant S sequences) were measured via enzyme-linked immunosorbent spot (ELISpot) assay and intracellular cytokine staining (ICCS). RESULTS: A clearly discernable spike antigen-specific CD4+ T-cell response was induced after 1 dose, but markedly enhanced after 2 doses. Counts and fold-increases in cells producing Th1 cytokines exceeded those secreting Th2 cytokines, although both phenotypes were clearly present. Interferon-γ responses to rS were detected in 93.5% of 2-dose 5-µg recipients. A polyfunctional CD4+ T-cell response was cross-reactive and of equivalent magnitude to all tested variants, including Omicron BA.1/BA.5. CONCLUSIONS: NVX-CoV2373 elicits a moderately Th1-biased CD4+ T-cell response that is cross-reactive with ancestral and variant S proteins after 2 doses. CLINICAL TRIAL REGISTRATION: NCT04368988.

3.
Front Immunol ; 13: 1004656, 2022.
Article in English | MEDLINE | ID: covidwho-2142023

ABSTRACT

Circulating, blood-borne SARS-CoV-2-reactive memory T cells in persons so far unexposed to SARS-CoV-2 or the vaccines have been described in 20-100% of the adult population. They are credited with determining the efficacy of the immune response in COVID-19. Here, we demonstrate the presence of preexisting memory CD4+ T cells reacting to peptides of the spike, membrane, or nucleocapsid proteins of SARS-CoV-2 in the bone marrow of all 17 persons investigated that had previously not been exposed to SARS-CoV-2 or one of the vaccines targeting it, with only 15 of these persons also having such cells detectable circulating in the blood. The preexisting SARS-CoV-2-reactive memory CD4+ T cells of the bone marrow are abundant and polyfunctional, with the phenotype of central memory T cells. They are tissue-resident, at least in those persons who do not have such cells in the blood, and about 30% of them express CD69. Bone marrow resident SARS-CoV-2-reactive memory CD4+ memory T cells are also abundant in vaccinated persons analyzed 10-168 days after 1°-4° vaccination. Apart from securing the bone marrow, preexisting cross-reactive memory CD4+ T cells may play an important role in shaping the systemic immune response to SARS-CoV-2 and the vaccines, and contribute essentially to the rapid establishment of long-lasting immunity provided by memory plasma cells, already upon primary infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Bone Marrow , CD4-Positive T-Lymphocytes , Nucleocapsid Proteins
4.
Immunol Cell Biol ; 100(4): 250-266, 2022 04.
Article in English | MEDLINE | ID: covidwho-1759190

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic perpetuated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has highlighted the continued need for broadly protective vaccines that elicit robust and durable protection. Here, the vaccinia virus-based, replication-defective Sementis Copenhagen Vector (SCV) was used to develop a first-generation COVID-19 vaccine encoding the spike glycoprotein (SCV-S). Vaccination of mice rapidly induced polyfunctional CD8 T cells with cytotoxic activity and robust type 1 T helper-biased, spike-specific antibodies, which are significantly increased following a second vaccination, and contained neutralizing activity against the alpha and beta variants of concern. Longitudinal studies indicated that neutralizing antibody activity was maintained up to 9 months after vaccination in both young and middle-aged mice, with durable immune memory evident even in the presence of pre-existing vector immunity. Therefore, SCV-S vaccination has a positive immunogenicity profile, with potential to expand protection generated by current vaccines in a heterologous boost format and presents a solid basis for second-generation SCV-based COVID-19 vaccine candidates incorporating additional SARS-CoV-2 immunogens.


Subject(s)
COVID-19 , Vaccinia , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunity, Cellular , Immunity, Humoral , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Vaccination
5.
Front Immunol ; 11: 559382, 2020.
Article in English | MEDLINE | ID: covidwho-1389163

ABSTRACT

Eliciting durable and protective T cell-mediated immunity in the respiratory mucosa remains a significant challenge. Polylactic-co-glycolic acid (PLGA)-based cationic pathogen-like particles (PLPs) loaded with TLR agonists mimic biophysical properties of microbes and hence, simulate pathogen-pattern recognition receptor interactions to safely and effectively stimulate innate immune responses. We generated micro particle PLPs loaded with TLR4 (glucopyranosyl lipid adjuvant, GLA) or TLR9 (CpG) agonists, and formulated them with and without a mucosal delivery enhancing carbomer-based nanoemulsion adjuvant (ADJ). These adjuvants delivered intranasally to mice elicited high numbers of influenza nucleoprotein (NP)-specific CD8+ and CD4+ effector and tissue-resident memory T cells (TRMs) in lungs and airways. PLPs delivering TLR4 versus TLR9 agonists drove phenotypically and functionally distinct populations of effector and memory T cells. While PLPs loaded with CpG or GLA provided immunity, combining the adjuvanticity of PLP-GLA and ADJ markedly enhanced the development of airway and lung TRMs and CD4 and CD8 T cell-dependent immunity to influenza virus. Further, balanced CD8 (Tc1/Tc17) and CD4 (Th1/Th17) recall responses were linked to effective influenza virus control. These studies provide mechanistic insights into vaccine-induced pulmonary T cell immunity and pave the way for the development of a universal influenza and SARS-CoV-2 vaccines.


Subject(s)
Adjuvants, Immunologic/pharmacology , Immunity, Cellular/immunology , Influenza A virus/immunology , Intraepithelial Lymphocytes/immunology , Animals , Cell Line , Dogs , Immunity, Innate/immunology , Immunologic Memory/immunology , Lung/immunology , Lung/virology , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred C57BL , Orthomyxoviridae Infections/immunology , Polylactic Acid-Polyglycolic Acid Copolymer/immunology , Toll-Like Receptor 4/immunology
6.
Clin Transl Immunology ; 10(4): e1269, 2021.
Article in English | MEDLINE | ID: covidwho-1162553

ABSTRACT

OBJECTIVES: Efforts to develop and deploy effective vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue at pace. Here, we describe rational antigen design through to manufacturability and vaccine efficacy of a prefusion-stabilised spike (S) protein, Sclamp, in combination with the licensed adjuvant MF59 'MF59C.1' (Seqirus, Parkville, Australia). METHODS: A panel recombinant Sclamp proteins were produced in Chinese hamster ovary and screened in vitro to select a lead vaccine candidate. The structure of this antigen was determined by cryo-electron microscopy and assessed in mouse immunogenicity studies, hamster challenge studies and safety and toxicology studies in rat. RESULTS: In mice, the Sclamp vaccine elicits high levels of neutralising antibodies, as well as broadly reactive and polyfunctional S-specific CD4+ and cytotoxic CD8+ T cells in vivo. In the Syrian hamster challenge model (n = 70), vaccination results in reduced viral load within the lung, protection from pulmonary disease and decreased viral shedding in daily throat swabs which correlated strongly with the neutralising antibody level. CONCLUSION: The SARS-CoV-2 Sclamp vaccine candidate is compatible with large-scale commercial manufacture, stable at 2-8°C. When formulated with MF59 adjuvant, it elicits neutralising antibodies and T-cell responses and provides protection in animal challenge models.

7.
Front Immunol ; 11: 596964, 2020.
Article in English | MEDLINE | ID: covidwho-1067653

ABSTRACT

We designed the killed swine influenza A virus (SwIAV) H1N2 antigen (KAg) with polyriboinosinic:polyribocytidylic acid [(Poly(I:C)] adsorbed corn-derived Nano-11 particle based nanovaccine called Nano-11-KAg+Poly(I:C), and evaluated its immune correlates in maternally derived antibody (MDA)-positive pigs against a heterologous H1N1 SwIAV infection. Immunologically, in tracheobronchial lymph nodes (TBLN) detected enhanced H1N2-specific cytotoxic T-lymphocytes (CTLs) in Nano-11-KAg+Poly(I:C) vaccinates, and in commercial vaccinates detected CTLs with mainly IL-17A+ and early effector phenotypes specific to both H1N2 and H1N1 SwAIV. In commercial vaccinates, activated H1N2- and H1N1-specific IFNγ+&TNFα+, IL-17A+ and central memory T-helper/Memory cells, and in Nano-11-KAg+Poly(I:C) vaccinates H1N2-specific central memory, IFNγ+ and IFNγ+&TNFα+, and H1N1-specific IL-17A+ T-helper/Memory cells were observed. Systemically, Nano-11-KAg+Poly(I:C) vaccine augmented H1N2-specific IFNγ+ CTLs and H1N1-specific IFNγ+ T-helper/Memory cells, and commercial vaccine boosted H1N2- specific early effector CTLs and H1N1-specific IFNγ+&TNFα+ CTLs, as well as H1N2- and H1N1-specific T-helper/Memory cells with central memory, IFNγ+&TNFα+, and IL-17A+ phenotypes. Remarkably, commercial vaccine induced an increase in H1N1-specific T-helper cells in TBLN and naive T-helper cells in both TBLN and peripheral blood mononuclear cells (PBMCs), while H1N1- and H1N2-specific only T-helper cells were augmented in Nano-11-KAg+Poly(I:C) vaccinates in both TBLN and PBMCs. Furthermore, the Nano-11-KAg+Poly(I:C) vaccine stimulated robust cross-reactive IgG and secretory IgA (SIgA) responses in lungs, while the commercial vaccine elicited high levels of serum and lung IgG and serum hemagglutination inhibition (HI) titers. In conclusion, despite vast genetic difference (77% in HA gene identity) between the vaccine H1N2 and H1N1 challenge viruses in Nano-11-KAg+Poly(I:C) vaccinates, compared to over 95% identity between H1N1 of commercial vaccine and challenge viruses, the virus load and macroscopic lesions in the lungs of both types of vaccinates were comparable, but the Nano-11-KAg+Poly(I:C) vaccine cleared the virus from the nasal passage better. These data suggested the important role played by Nano-11 and Poly(I:C) in the induction of polyfunctional, cross-protective cell-mediated immunity against SwIAV in MDA-positive pigs.


Subject(s)
Influenza A virus/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Nanoparticles , Orthomyxoviridae Infections/veterinary , Poly I-C , Swine Diseases/prevention & control , Vaccines, Inactivated , Animals , Antibodies, Viral/immunology , Antigens, Viral/immunology , Cross Reactions , Cytokines/metabolism , Immunity, Cellular , Immunologic Memory , Influenza Vaccines/chemistry , Nanoparticles/chemistry , Poly I-C/chemistry , Swine , Swine Diseases/immunology , Swine Diseases/virology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Viral Load
8.
Front Immunol ; 11: 580250, 2020.
Article in English | MEDLINE | ID: covidwho-918140

ABSTRACT

Little is known about the time-dependent immune responses in severe COVID-19. Data of 15 consecutive patients were sequentially recorded from intensive care unit admission. Lymphocyte subsets and total monocyte and subsets counts were monitored as well as the expression of HLA-DR. For 5 patients, SARS-CoV-2-specific T-cell polyfunctionality was assessed against Spike and Nucleoprotein SARS-CoV-2 peptides. Non-specific inflammation markers were increased in all patients. Median monocyte HLA-DR expression was below the 8,000 AB/C threshold defining acquired immunodepression. A "V" trend curve for lymphopenia, monocyte numbers, and HLA-DR expression was observed with a nadir between days 11 and 14 after symptoms' onset. Intermediate CD14++CD16+ monocytes increased early with a reduction in classic CD14++CD16- monocytes. Polyfunctional SARS-Cov-2-specific CD4 T-cells were present and functional, whereas virus-specific CD8 T-cells were less frequent and not efficient. We report a temporal variation of both innate and adaptive immunity in severe COVID-19 patients, helpful in guiding therapeutic decisions (e.g. anti-inflammatory vs. immunostimulatory ones). We describe a defect in virus-specific CD8 T-cells, a potential biomarker of clinical severity. These combined data also provide helpful knowledge for vaccine design. CLINICAL TRIAL REGISTRATION: https://clinicaltrials.gov/, identifier NCT04386395.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Monocytes/immunology , SARS-CoV-2/immunology , Severity of Illness Index , Aged , Biomarkers , COVID-19/virology , Female , GPI-Linked Proteins/metabolism , HLA-DR Antigens/immunology , Humans , Immunity, Cellular , Lipopolysaccharide Receptors/metabolism , Longitudinal Studies , Male , Middle Aged , Prospective Studies , Receptors, IgG/metabolism , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL